wx.AffineMatrix2D¶
A 3x2 matrix representing an affine 2D
transformation.
Added in version 2.9.2.
Class Hierarchy¶
Methods Summary¶
Default constructor. |
|
Concatenate this matrix with another one. |
|
Get the component values of the matrix. |
|
Invert this matrix. |
|
Check that this matrix is identical with t. |
|
Check if this is the identity matrix. |
|
Add mirroring to this matrix. |
|
Add clockwise rotation to this matrix. |
|
Add scaling to this matrix. |
|
Set all elements of this matrix. |
|
Applies the linear part of this matrix, i.e. without translation. |
|
Applies this matrix to the point. |
|
Add the translation to this matrix. |
|
Check that this matrix differs from t. |
|
Check that this matrix is identical with t. |
Class API¶
- class wx.AffineMatrix2D(AffineMatrix2DBase)¶
Possible constructors:
AffineMatrix2D() -> None
A 3x2 matrix representing an affine
2D
transformation.
Methods¶
- __init__(self)¶
Default constructor.
The matrix elements are initialize to the identity matrix.
- Return type:
None
- Concat(self, t)¶
Concatenate this matrix with another one.
The parameter matrix is the multiplicand.
- Parameters:
t (wx.AffineMatrix2DBase) – The multiplicand.
- Return type:
None
# | t.m_11 t.m_12 0 | | m_11 m_12 0 | # matrix' = | t.m_21 t.m_22 0 | x | m_21 m_22 0 | # | t.m_tx t.m_ty 1 | | m_tx m_ty 1 |
- Get(self)¶
Get the component values of the matrix.
- Return type:
Tuple[Matrix2D, Point2DDouble]
- Invert(self)¶
Invert this matrix.
If the matrix is not invertible, i.e. if its determinant is 0, returns
False
and doesn’t modify it.# | m_11 m_12 0 | # Invert | m_21 m_22 0 | # | m_tx m_ty 1 |
- Return type:
bool
- IsEqual(self, t)¶
Check that this matrix is identical with t.
- Parameters:
t (wx.AffineMatrix2DBase) – The matrix compared with this.
- Return type:
None
- IsIdentity(self)¶
Check if this is the identity matrix.
- Return type:
bool
- Mirror(self, direction=HORIZONTAL)¶
Add mirroring to this matrix.
- Parameters:
direction (int) – The direction(s) used for mirroring. One of
wx.HORIZONTAL
,wx.VERTICAL
or their combinationwx.BOTH
.- Return type:
None
- Rotate(self, cRadians)¶
Add clockwise rotation to this matrix.
- Parameters:
cRadians (wx.Double) – Rotation angle in radians, clockwise.
- Return type:
None
# | cos sin 0 | | self.11 self.12 0 | # matrix' = | -sin cos 0 | x | self.21 self.22 0 | # | 0 0 1 | | self.tx self.ty 1 |
- Scale(self, xScale, yScale)¶
Add scaling to this matrix.
- Parameters:
xScale (wx.Double) – Scaling in x direction.
yScale (wx.Double) – Scaling in y direction.
- Return type:
None
# | xScale 0 0 | | self.11 self.12 0 | # matrix' = | 0 yScale 0 | x | self.21 self.22 0 | # | 0 0 1 | | self.tx self.ty 1 |
- Set(self, mat2D, tr)¶
Set all elements of this matrix.
- Parameters:
mat2D (wx.Matrix2D) – The rotational components of the matrix (upper 2 x 2).
tr (Point2DDouble) – The translational components of the matrix.
- Return type:
None
- TransformDistance(self, *args, **kw)¶
-
TransformDistance (self, p)
Applies the linear part of this matrix, i.e. without translation.
- Parameters:
p (Point2DDouble) – The source receiving the transformations.
- Return type:
Point2DDouble
# | self.11 self.12 0 | # dist' = | src.self.x src._my 0 | x | self.21 self.22 0 | # | self.tx self.ty 1 |
- Returns:
The source with the transformations applied.
TransformDistance (self, dx, dy)
- Parameters:
dx (wx.Double)
dy (wx.Double)
- Return type:
Tuple[float, float]
- TransformPoint(self, *args, **kw)¶
-
TransformPoint (self, p)
Applies this matrix to the point.
- Parameters:
p (Point2DDouble) – The point receiving the transformations.
- Return type:
Point2DDouble
# | self.11 self.12 0 | # point' = | src.self.x src._my 1 | x | self.21 self.22 0 | # | self.tx self.ty 1 |
- Returns:
The point with the transformations applied.
TransformPoint (self, x, y)
- Parameters:
x (wx.Double)
y (wx.Double)
- Return type:
Tuple[float, float]
- Translate(self, dx, dy)¶
Add the translation to this matrix.
- Parameters:
dx (wx.Double) – The translation in x direction.
dy (wx.Double) – The translation in y direction.
- Return type:
None
# | 1 0 0 | | self.11 self.12 0 | # matrix' = | 0 1 0 | x | self.21 self.22 0 | # | dx dy 1 | | self.tx self.ty 1 |
- __ne__(self, t)¶
Check that this matrix differs from t.
- Parameters:
t (wx.AffineMatrix2DBase) – The matrix compared with this.
- Return type:
bool
- __eq__(self, t)¶
Check that this matrix is identical with t.
- Parameters:
t (wx.AffineMatrix2DBase) – The matrix compared with this.
- Return type:
bool